在线浊度仪

操作说明书

VER-C7-24001

上海鼎桓流体控制有限公司

目 录

序言	1
功能特性	1
工作原理	2
技术规格	2
安装说明	3
嵌入式安装	3
壁挂式安装	4
嵌入式安装	4
仪器接线连接	5
电气连接	6
按键说明	6
屏幕显示说明	7
菜单结构	8
1. 测量设置	10
1.1 传感器设置	10
1.2 温度设置	11
2. 校准设置	12
2.1 多点校准	12
2.2 浊度现场校准	14
3. 警报设置	15
4. 电流设置	18
5. 通讯设置	20
6. 系统设置	21
7. 测试维护	24
8. 历史记录	25
MODBUS RTU 基本信息	26
命令结构	
MODBUS RTU 传输模式	26
检查域结构:循环冗余校验(CRC16)	27
结构说明	27
MODBUS RTU CRC 校验	27
MODBUS RTU 仪器中的实施	28
仪器的 MODBUS RTU 功能码	28
MODBUS 功能码 0x10: 写多重寄存器	
仪器中的数据格式	
读取指令模式	33
日常维护	34
常见问题	34
成套性	35
质保	
注意事项	36

序言

感谢您对我们的支持。请在使用前,详细阅读操作说明书,帮助您正确使用本公司产品。

在收到仪器时,请小心打开包装,检查仪器及配件是否因运送而损坏,配件是否齐全,如发现异常,请联系我公司售后服务部门或地区客服中心,并保留包装物,以便寄回处理。

接线或修理应由专业人员来完成,并且只对断电的仪器进行操作。一旦仪器安全出现问题,立即将仪器断电,以防止任何无意操作。例如,当出现下列情况时可能为非安全状态:

- 1) 仪器出现明显的损坏
- 2) 仪器无法正常运行或提供指定的测量
- 3) 仪器在温度超过 70°C的环境中存放了较长时间 该仪器必须按照当地相关的规范由专业人员来安装, 指导说明包括在该操作指导 手册中。遵守该仪器的技术说明书和输入等级。

特别提示!!!

在菜单内若提示请输入密码,则需输入提前设置好的密码,在未设置密码的情况下,可直接选择 "Enter"键进入,出厂设置默认 "无密码"。

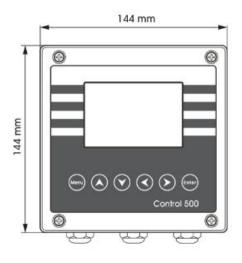
功能特性

在线浊度仪(以下简称仪器)是带微处理器的水质在线监测仪。在线浊度仪是为测量市政污水、工业废水处理过程、自来水厂等进、出水浊度而设计的工业在线监测仪表。

整套测量系统主要由仪器(二次仪表)和浊度传感器(一次表)两部分组成,传感器接触被测水溶液,仪器显示水溶液的浓度值和温度值及工作状态。

- ◆ 智能性:采用单片微处理机完成浊度值测量、温度测量和补偿:
- ◆ 双高阻前置放大器: 输入阻抗高, 防噪音, 抗干扰能力强;
- ◆ 多点校准及已知浓度校准等多种标定方式:
- ◆ 人机对话:菜单操作结构,使用者按照屏幕上的提示就可操作:
- ◆ 多参数同屏显示: 同时显示浊度值、温度值和工作状态;
- ◆ 两路输出信号: 软件选择 4~20mA、0~20mA 或 20~4mA 输出:
- ◆ 报警上、下限自由设定:上、下限超限报警提示:
- ◆ 三组继电器控制开关, 迟滞量控制范围可调:
- ◆ 自设密码:用户可以自设或修改密码,以免无关人员进入造成误操作。

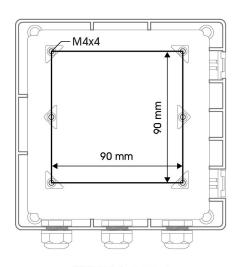
工作原理

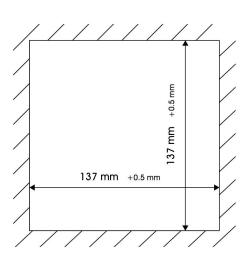

红外传感器发射器发送的光波在传输过程中经过被测物的吸收、反射和散射后仅有一小部分光线能照射到接收器上,透射光的透射率与被测浊度的浓度成比例关系,通过测量透射光的透射率计算浊度的浓度。


技术规格

浊度范围	0~99999NTU(根据传感器量程);
测量单位	NTU、mg/L;
分辨率	0.001/0.01/0.1/1 (根据传感器量程);
温度	-10~150.0 (根据传感器量程);
分辨率	0.1°C;
基本误差	±0.3°C;
电流输出	0/4~20mA, 20~4mA (2路,负载电阻<500Ω);
通讯输出	RS485 Modbus RTU;
控制触点	三组:5A 250VAC, 5A 30VDC;
供电电源	85~265VAC, 9~36VDC(选配,二选一),功率:<3W;
工作环境	除地球磁场外周围无强磁场干扰;
环境温度	-10 ∽ 60°C;
相对湿度	不大于 90%;
防护等级	IP65;
仪器重量	0.8kg;
外型尺寸	144x144x118mm;
开孔尺寸	137x137mm;
安装方式	盘装(嵌入式)、壁挂式、管道式。

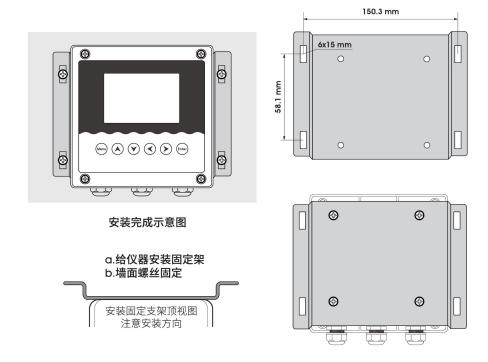
安装说明


安装尺寸图

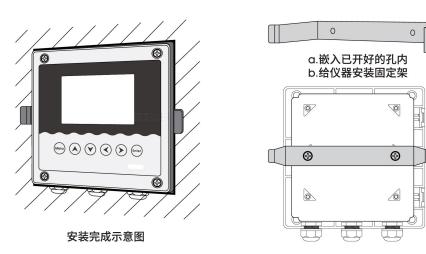


控制器外形尺寸

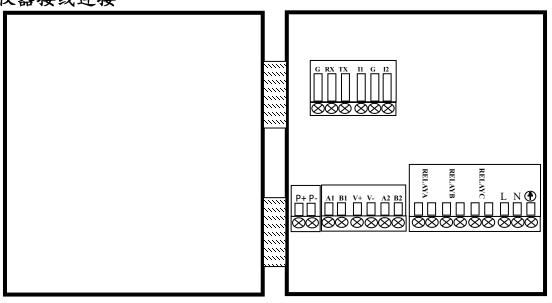
嵌入式安装



背部固定孔尺寸



嵌入式安装开孔尺寸


壁挂式安装

嵌入式安装

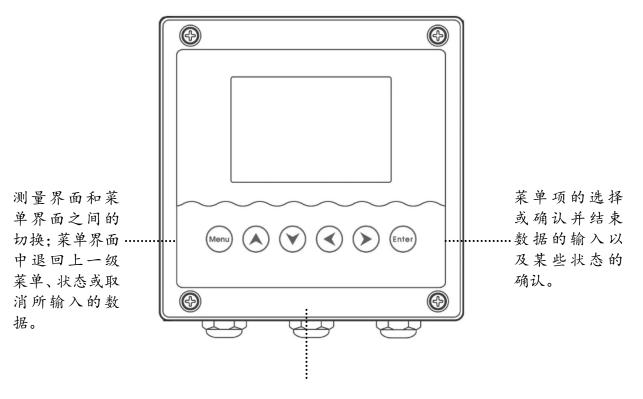
仪器接线连接

		T	1				
接线端子	功能	接线端子	功能				
G	空	A1	仪器 RS485 通讯输出端 A				
TX	空	B1	仪器 RS485 通讯输出端 B				
RX	空	V+	传感器供电: DC V+				
		V-	传感器供电: DC V-				
I1	电流输出端1 正极	A2	传感器通讯: RS485 A				
G	电流输出公共端 负极	B2	传感器通讯: RS485 B				
12	电流输出端2 正极	RELAY A	继电器一				
		RELAY B	继电器二				
		RELAY C	继电器三				
P+	直流供电正极(选配)	L	交流供电火线(选配)				
(9~36VDC)	且加强电工板(远距)	(85 ^{265VAC)}	文流伝电人线(远距)				
P-	直流供电负极(选配)	N	交流供电零线(选配)				
		(交流供电地线(选配)				
	交流电供电和直流电供电二选一						

电气连接

仪器与浊度传感器的连接:供电电源、输出信号、继电器触点与仪器尾部接线端的连接,传感器固定的电缆线引线长度常规为5-10米,接线端部带有标号,将其插入仪器尾部字符匹配的接线端拧紧即可。

按键说明


按键操作提示:

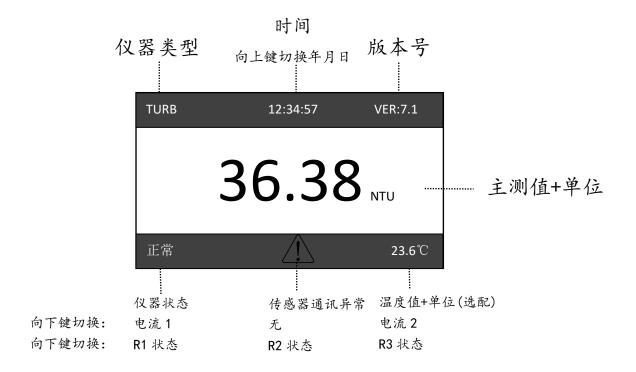
短按: 短按为按下后立即松开按键。(下文中不注明则为短按)

长按:长按为按下按键3秒后松开按键。

按住: 按住为按下按键不放, 并在一定时间后加速, 直到数据调整到用户需

要设定值时再松开按键。

左键: 数据输入时向左移动光标, 或菜单左移:


上键:菜单上移或数值增加;

右键: 数据输入时向右移动光标, 或菜单右移;

下键:菜单下移或数值减少。

屏幕显示说明

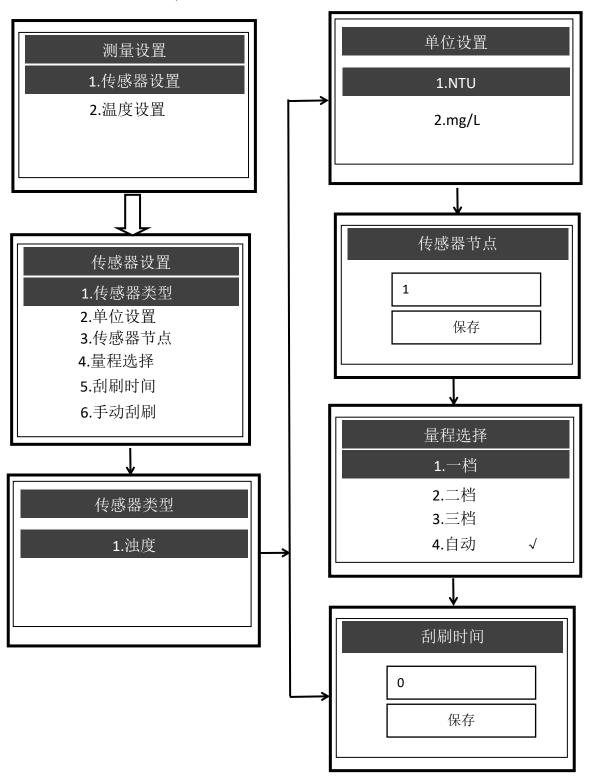
使用前应检查所有的管路连接及电气连接, 接通电源后仪器显示如下图。

浊度测量模式

TURB	12:34:56	VER:7.1
	36.38	NTU
正常		23.6℃

菜单结构

以下为该仪器菜单结构,按【Menu】键进入"主菜单":


	《仪益朱平结构,	传感器类型	进入 主米平 : 浊度
			NTU
		单位设置	mg/L
		 传感器节点	1 (默认)
		14 22 22 17 17	一档
	传感器设置		二档
		量程选择	三档
			自动(默认)
1. 测量设置		 刮刷时间	H W Coco
		手动刮刷	
		温度类型	不可用
		温度偏置	0.0 (默认)
			自动
	温度设置	温度输入	手动
		12/2/11/	无(默认)
			XXX. X°C(摄氏度) (默认)
		单位设置	XXX. X°F (华氏度)
	多点校准	十点校准	MALK! († 74)2)
	多点校准查询	T MIZIE	
2. 校准设置	现场校准		
		偏置调整	0.00(默认)
	现场校准查询	线性调整	1.00 (默认)
	继电器一	开关状态	常开(默认)/常闭
		通道选择	主测 (默认) /温度
		高低点设置	低报警/高报警(默认)
	>E C 88	极限值设置	4000NTU
	-	滞后量	0. 000NTU
			常开(默认)/常闭
		通道选择	主测(默认)/温度
3. 警报设置	继电器二	高低点设置	低报警(默认)/高报警
	地七品一	极限值设置	0.000NTU
		滞后量	0. 000NTU
			常开(默认)/常闭
		通道选择	主测(默认)/温度
	继电器三	高低点设置	低报警(默认)/高报警
		极限值设置	
		滞后量	0. 000NTU
		'P'ル生	J. JUNITU

		持续时间	00005min (默认)	
	自动清洗	关闭时间	00005min (默认)	
		나 17 씨나 나 모모	继电器一/继电器二	
		选择继电器	继电器三(默认)/无	
		清洗模式	保持(默认)/实时	
		通道选择	主测(默认)/温度	
	上、 シ	输出类型	4~20mA/20~4mA/0~20mA	
	电流一	上限值 4000NTU		
4 由运证图		下限值	0. 000NTU	
4. 电流设置		通道选择	主测/温度(默认)	
	由法一	输出类型	4~20mA/20~4mA/0~20mA	
	电流二	上限值	100.0°C	
		下限值	0.0°C	
	波特率	4800 Bps/9600	Bps (默认) /19200 Bps	
F 汤油.非里	校验位	无校验(默认)/偶校验/奇校验		
5. 通讯设置	停止位	一位(默认)/二位		
	网络节点	1 (默认)	1~247 可设置	
	恢复出厂	校准恢复	恢复校准参数	
		参数恢复	恢复出厂设置	
	D - 11 III	显示速率	1. 低 2. 标准 3. 中 4. 高	
		北小江吧	30 秒/1 分钟/5 分钟(默认)	
	显示设置	背光设置	15 分钟/30 分钟/常亮	
6. 系统设置		对比度调整		
	时间和日期	日期设置/时间	设置	
	密码设置	无密码 (默认)		
	产品序列	SN:XXXXXXXXXX		
	版本信息	VER7. 1. 5(示例	列)	
	语言设置	中文		
	由法标论	电流一 4mA/电	流一 20mA	
7. 测试维护	电流校准	电流二 4mA/电	流二 20mA	
	继电器测试	继电器一:关/	继电器二:关/继电器三:关	
8. 历史记录	设置间隔			
0. 加文儿水	数据查询			

1. 测量设置

1.1 传感器设置

此仪器为在线浊度仪, 需搭配浊度传感器使用。

单位设置: 在单位设置内可以选择"NTU"和"mg/L"。

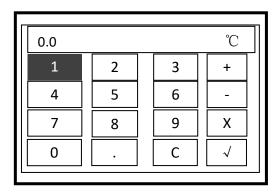
传感器节点: 当传感器的通讯地址改变时,可以修改传感器节点,和传感器正常通讯,假设传感器通讯地址是5,则传感器节点修改为5。

量程选择:选择"自动"时,仪器会在测量数据超过一档量程时自动切换为二档或三档。

"刮刷时间"和"手动刮刷"需连接传感器设置。

刮刷时间:可设置传感器刮刷启动时间,假设需要每隔30分钟启动一次刮刷,在此菜单下设置数字为30。

手动刮刷:点击"手动刮刷"可立即启动传感器刮刷,建议短时间内不要频繁启动挂刷。


1.2 温度设置

仪器接入的传感器为数字信号,故无需选择温度类型。控制器会自动读取传感器检测到的温度并显示在仪器主测界面右下角,点击"温度类型"时,会显示"不可用!"。

温度偏置:用户可以将其它标准仪器测得的温度和仪器自动测得温度对比,若存在误差可使用"温度偏置"进行修正,假设仪器测得温度为 25° C,其它标准仪器测得温度为 24.8° C,则在此处输入"- 0.2° C",按"Enter"保存即可。

温度输入:可以选择"自动"、"手动"和"无"三种温度方式,选择"自动",仪器会自动显示传感器所检测到的温度值,选择"手动",用户可以手动输入温度值,系统默认 25℃补偿,选择"无",仪器将不会显示温度值。

单位设置:用户可以在单位设置内选择温度的两种单位:摄氏度($^{\circ}$ C)和华氏度($^{\circ}$ F)。

2. 校准设置

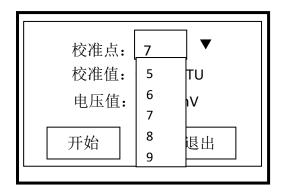
进入"校准设置",若提示请输入密码,则需输入提前设置好的密码,在未设置密码的情况下,可直接选择"确定",按"Enter"键进入:

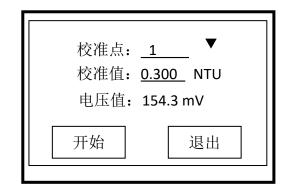
	多点校准	输入不同标液浓度值
拉洛亚里	多点校准查询	
校准设置	现场校准	输入当前实际浓度值校准
	现场校准查询	

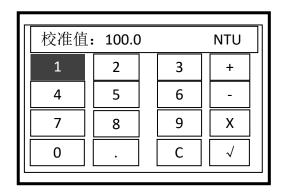
2.1 多点校准

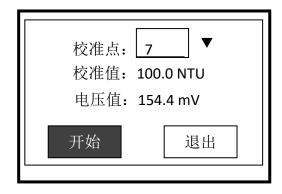
浊度分为"多点校准"和"现场校准";

校准前需准备磁力搅拌器,磁珠,已知浓度的浊度标液,烧杯。使用磁力搅拌器上附带的支架固定浊度传感器,使浊度传感器头部部分可以浸入标液内,将


磁珠放入搅拌器内,选择"校准设置-多点校准",选择合适的校准点,按【Enter】 键确认选项。

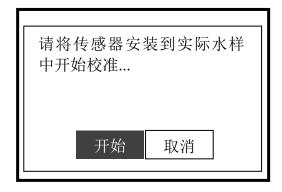

选择"多点校准", 共分为十点校准。下面用 100NTU 标液举例: 选择"校准设置", 按【Enter】键确认, 画面进入校准模式。


进入校准设置后,仪器显示如上图,选择"多点校准"。



用户进入此页面之后,按"Enter"(确认)键和"方向键"可选择校准点(1~10),选择校准点后按"Enter",按向下键光标会下移到"校准值",按"Enter"(确认)键可手动输入标液值,也可以选择仪器内部默认的校准值,应注意当前输入的值不得大于下一校准点值;

例:在"校准点1"-"校准值"手动输入1NTU,则"校准点2"-"校准值"应大于1NTU。


校准值设置完成后,按"方向键",选择"开始",按"Enter"开始校准,等待数据稳定后,校准完成并按"Enter"(确定)保存。

校准点: _7 ▼ 校准值: 100.0 NTU 电压值: 154.9 mV 校准中…120S

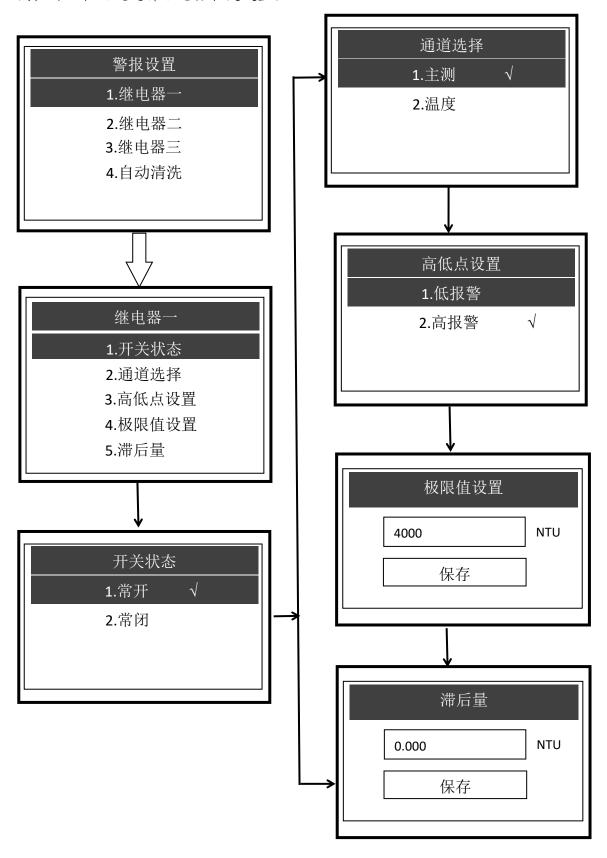
校准点: _7____ 校准值: 100.0 NTU 电压值: 154.9 mV 校准完成,按确定保存!

校准数据保存后,校准结果将会记录到仪器内部,若需再次查询校准结果可选择"校准设置"内的"多点校准查询"。

2.2 浊度现场校准

测量值: 100.0 NTU 电压值: 154.8 mV 温度值: 25.0℃ 电压稳定后按确定 60 S

使用浊度传感器测量实际水样值,待数值稳定后(电压值不能为 0),请输入标准便携式仪器或标准实验室化验设备数据得出的浊度数值(输入位数为 6位,含小数点),按下光标选择确定后,仪器会显示线性补偿,按下"保存"键退出。



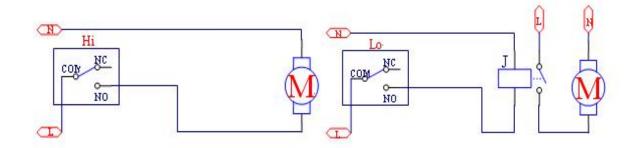
数据保存后,校准结果将会记录到仪器内部,若需再次查询校准结果可选择 "校准设置"内的"现场校准查询"。

3. 警报设置

用户可以在此处选择继电器相关设置。

开关状态: 用于确认当前继电器工作状态。

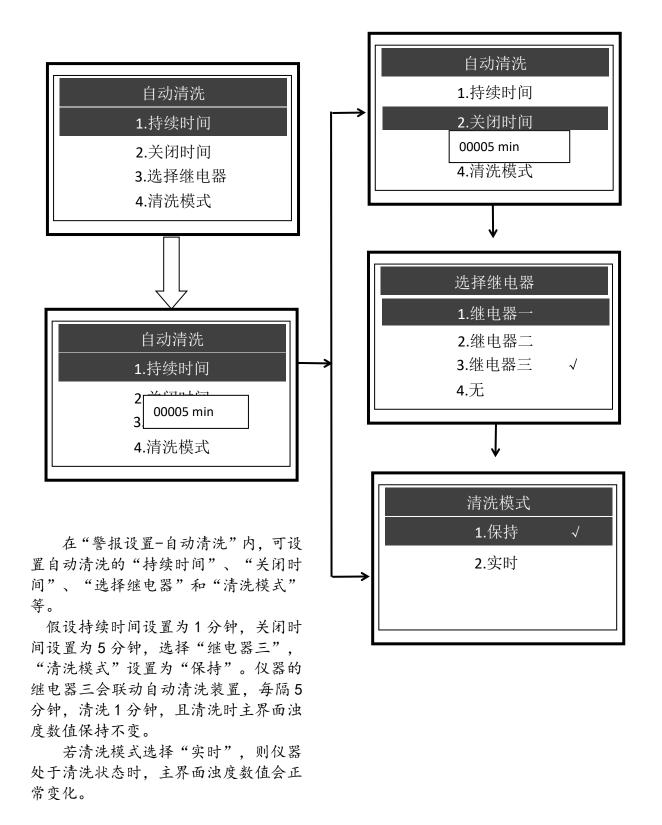
通道选择: 用来控制继电器输出的数据类型。

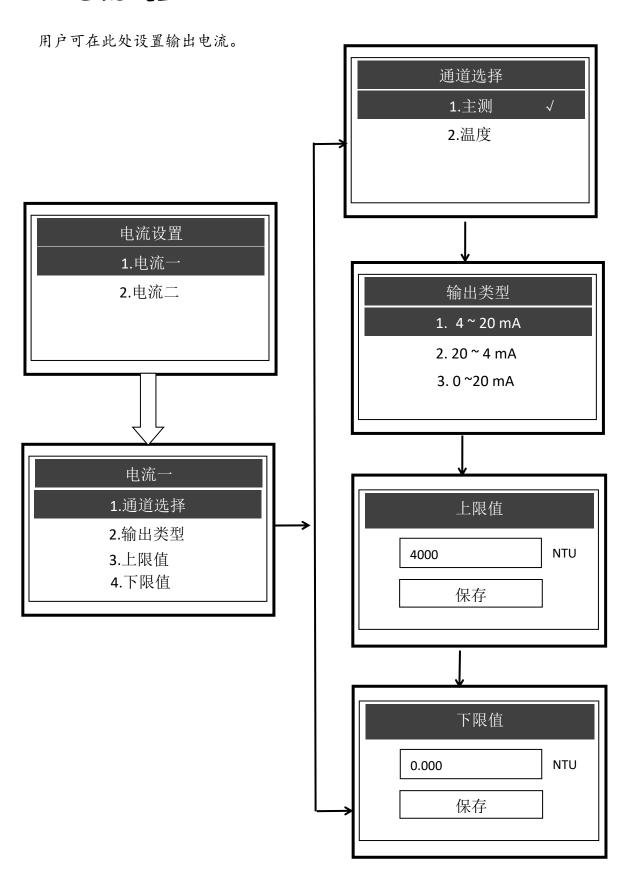

高低点设置:用户可通过继电器的"高低点设置"进行继电器"高报警"或者"低报警"设置,(继电器一默认为"高报警",继电器二默认为"低报警"),仪器会在测量数据:大于高限值/小于低限值后,发出嘀嗒声,并在主界面显示报警状态。

例: 浊度值在超过 2000 后需要报警,在极限值设定内输入 2000,设置完成后,仪器会在浊度值超过 2000 之后发出一声嘀嗒声,此时量测模式下,左下角会显示"高限报警",此时继电器常开端闭合,常闭端断开,继电器开始工作,若需持续报警提示,需连接声光报警器等设备。

极限值设置:通过极限值来设定高限、低限的数值。

- "滞后量"设置有两个功能:
- 1、用于继电器控制的迟滞量设置,滞后量可防止继电器在控制点频繁开、关。
 - 2. "滞后量"用于加药系统单点范围控制。


例:设置浊度值高报警值为 2000,滞后量为 100,则仪器会在检测到浊度值大于 2000 时报警,低于 1900 时停止。


控制负载额定电流小于继电器所承受电流时,可按上图左进行连接(电源不可超过220V);

控制负载额定电流大于继电器所承受电流时,需加接交流接触器,可按上图右进行连接。

"继电器二"和"继电器三"可参考继电器一步骤

4. 电流设置

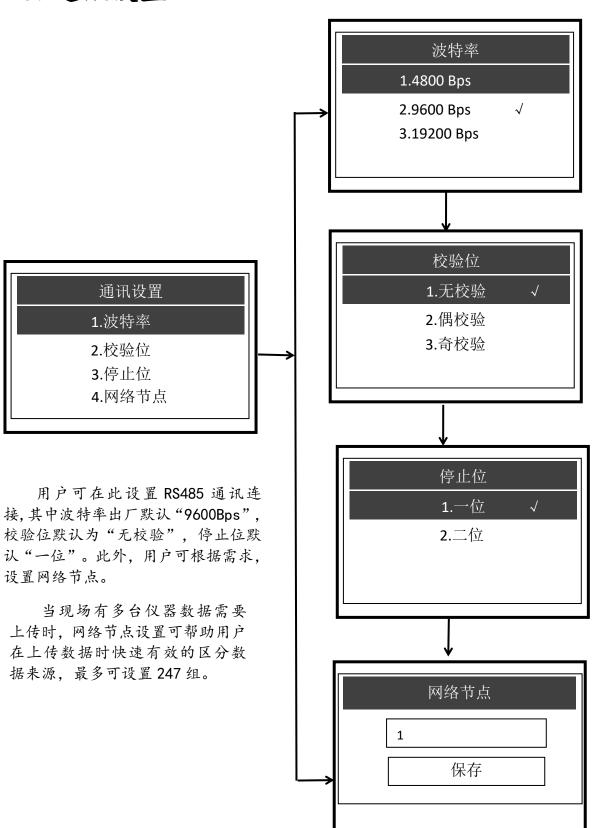
"通道选择"可选择输出"主测"值或者"温度"值;

"输出类型"有三种可供选择,分别为"4~20mA"、"20~4mA"和"0~20mA",分别对应测量值的上、下限值;

例如在此仪器内,"通道选择"为"主测",输出类型为"4-20mA",上限值为2000,下限值为0,则4mA对应的浊度数值为2000,20mA对应的浊度数值为0.00。

"电流设置"可用于连接中控机和数采仪等设备。

输出电流计算方式:

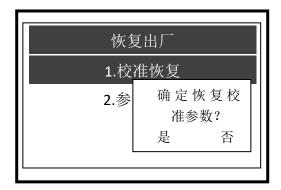

1. 输出类型为 4-20mA: (当前显示值-下限值) ÷ (上限值-下限值) X16+4例: 当前仪表显示浊度数值为 1000, 仪表内上限值为 2000, 仪表内下限值默认为 0, 则输出电流为 (1000-0) ÷ (2000-0) X16+4=12.00mA (保留两位小数) 2. 输出类型为 0-20mA: (当前显示值-下限值) ÷ (上限值-下限值) X20例: 当前仪表显示浊度数值为 1000, 仪表内上限值为 2000, 仪表内下限值默认为 0, 则输出电流为 (1000-0) ÷ (2000-0) X20=10.00mA (保留两位小数) 3. 输出类型为 20-4mA: "20-【(当前显示值-下限值) ÷ (上限值-下限值) X16】"例: 当前当前仪表显示浊度数值为 1000, 仪表内上限值为 2000, 仪表内下限值默认为 0, 则输出电流为 20-【(1000-0) ÷ (2000-0) X16】=12.00mA (保留两位小数)

上、下限值可以用来修改电流"输出类型"对应的数值;

假设"通道选择"为主测,输出类型为"4-20mA",将"上限值"修改为4000,下限值修改为0,则4mA对应的浊度值为0,20mA对应的浊度值为4000。

电流二可参考电流一步骤

5. 通讯设置


6. 系统设置

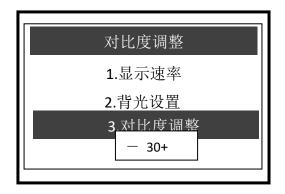
在系统设置可以修改"恢复出厂"、"版本信息"及"修改密码"等相关设置。

恢复出厂:在"恢复出厂"内,分 为"校准恢复"和"参数恢复";

"校准恢复"会将仪器内部用户校准的数据进行恢复,恢复后需要重新校准:

"参数恢复"会将仪器内部除校准值外的参数恢复到出厂状态。

进入"恢复出厂",需要输入密码,在没有设置过密码时,选择"确定"即可进入"恢复出厂"界面。

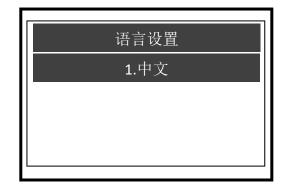


显示设置:在此进行"显示速率"、"背光设置"、"对比度调整",可对界面亮度、背光时间等进行设置。

"显示速率"可以调节屏幕显示数据的速度,系统内部分为"低、标准、中、高"四类。出厂时,系统默认显示速率为"标准"。

- "背光设置"用于调节仪器高亮时间。
- "对比度调整"用来调节屏幕光暗对比,向左调淡显示文字,或按向右键调深显示文字。

在"时间和日期"内,设置"年月日"和"时分秒"。


用户可在此了解产品的"密码设置"、"版本信息"和"恢复出厂" 密码设置:在"密码设置"内,首先需要输入密码,如未设置过密码时, 选择"确定"进入可跳至"设置新密码"界面,密码最多可输入四位。

密码设置完成之后,退出到测量模式,再次进入菜单需输入密码。若需要取消密码,则在"密码设置"内,先按照提示输入密码,在提示"设置新密码"时,直接选择"保存"即可,本产品出厂时默认无密码。

产品序列:产品序列号为我公司出厂时的出厂编号。

版本信息

VER: 7.1.5

(图片为示例)

版本信息:在不方便将产品寄回维修时,产品版本信息和产品序列 号可帮助我公司技术了解此表,便于分析情况与提供远程帮助。

语言设置:默认为"中文",目前系统内存暂不支持多语言版本,若需其他语言版本,可与我公司联系。

7. 测试维护

电流校准
1.电流一 4mA
2.电流一 20mA
4.电流二 20mA

进入"电流校准",需要输入密码,如未设置过密码时,选择"确定"即可进入"电流校准"界面。

用户可在此可进行电流校准:

例:需要校准电流一4mA;

用户将万用表和仪器内部的"I1"(输出电流一/正极)和"G"(输出电流负极)连接后,万用表若显示毫安值3.98mA,可在输入参数值处按"上方向键"或者"右方向键"进行修改,直到万用表上显示电流值为对应的毫安值(4mA),即完成校准。

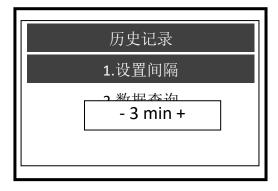
测试电流一时,万用表的表笔需和"I1" & "G"相连,测试电流二时,需和"I2" &"G"相连,其中"I1"和"I2"均为正极,"G"为负极。

注意: 需要保证万用表电量充足,如万用表电量不足,电流测量数据 会产生偏差。

测试维护 1.电流校准 2.继电器测试

继电器测记	t
1.继电器一:	关
2.继电器二:	关
3.继电器三:	关

"继电器测试"选择对应的继电器后,按下"Enter"可听到嘀嗒声(可万用表测量),并测量继电器两端为闭合(开关状态.常开)或断开(开关状态.常闭)。


8. 历史记录

在"历史数据"内,分为:

设置间隔:设置历史数据存储时间;

数据查询:查询历史数据。

设置间隔:按左方向键和右方向键可以缩短或延长历史数据的存储时间,最快可一分钟存储一条当前仪表监测到的数据,最长可 240 分钟存储一条数据。

数据查询

22.08.26 12:46 100.2NTU 22.08.26 12:49 100.2NTU 22.08.26 12:52 100.2NTU 22.08.26 12:55 100.2NTU 22.08.26 12:58 100.2NTU 22.08.26 13:07 100.2NTU

数据查询 22.08.26 12:46 100.2NTU 22.08.26 12:49 100.2NTU 2 1803/16256 TU

2 1803/16256 TU 22.08.26 12:58 100.2NTU 22.08.26 13:07 100.2NTU

数据查询:进入数据查询界面,可以查询到最近的 8 条历史数据,按上方向键和下方向键查询历史记录,也可以按 ENTER 键,出现上图所示界面,"1803/16256"表示当前仪表可存储 16256 条数据,已存储 1803 条数据,按方向可以调节左侧数字,用于快速定位搭配想要查询的时间段附近的数据。

MODBUS RTU 基本信息

概述

此文档硬件版本号为 V1.0; 软件版本号为 V6.0 及以上。本文档详细介绍了 MODBUS RTU 接口,目标对象是软件程序员。

MODBUS 命令结构

本文档中的数据格式说明;一进制显示,后缀用B,例如:10001B 十进制显示, 无任何前后缀,例如:256 十六进制显示,前缀用 0x,例如:0x2A

ASCII 字符或 ASCII 字符串显示,例如:"YL0114010022"

命令结构

MODBUS 应用协议定义了简单协议数据单元(PDU), 与基础通信层无关:

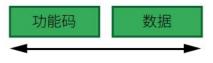
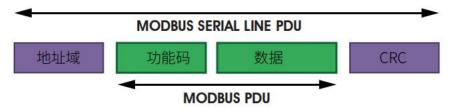



图 1: MODBUS 协议数据单元

特定总线或网络上的 MODBUS 协议映射介绍了协议数据单元的附加字段。启动 MODBUS 交换的客户 端创建 MODBUS PDU:随后添加域,建立正确的通信 PDU.

图 2: 串行通信的 MODBUS 结构

在 MODBUS 串行线上,地址域仅包含从仪器地址。提示:

仪器地址范围是 1... 247

在主机发送的请求帧的地址域中设置从机的仪器地址。从机回馈响应时,将自己的仪器地址放置在响 应帧的地址域中,使得主站知道哪个从机回馈响应的。 功能码指示服务器执行的操作类型。

CRC 域是"冗余校验"计算结果,按照信息内容执行。

MODBUS RTU 传输模式

仪器使用 RTU (远程终端单元)模式进行 MODBUS 串行通信时,每条信息的 8 位字节包含两个 4 位十六 进制字符。此模式的主要优点是具有更大的字符密度,比相同波特率的 ASCII 模式具有更好的数据吞吐 量。每条信息必须以连续的字符串传输。

在 RTU 模式中的每个字节的格式(11 位):

编码系统: 8位二进制

报文中每个8位字节含有两个4位十六进制字符(0-9、A-F)

每个字节中的位: 1个起始位

8个数据位,先发最低有效位无奇偶校验位

2位停止位

波特率: 9600bps

字符是如何串行传送的:

每个字符或字节均由此顺序发送(从左到右)最低有效位(LSB)……最高有效位(MSB)

起始位 1 2 3 4 5 6 7 8 停止位 4	亭止位
---------------------------	-----

图 3: RTU 模式位序列

检查域结构:循环冗余校验(CRC16)

结构说明

从仪器地址	功能码	数据	CRC		
1 个字节	1 个字节	0252 字节	2 个字节		
			CRC 低字节	CRC 高字节	

图 4: RTU 信息结构

MODBU S 帧最大为 256 字节

MODBUS RTU 信息帧

在 RTU 模式,报文帧由时长至少为 3,5 个字符时间的空闲间隔区分,在后续部分,这个时间区间被称作 t3.5.

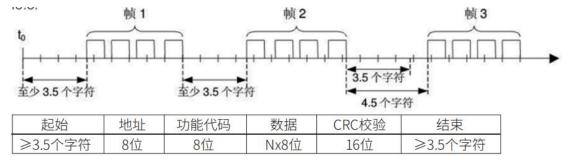


图 5: RTU 报文帧

整个报文帧必须以连续的字符流发送。

两个字符之间的停顿时间间隔超过1.5个字符时,信息帧认为不完整,接收 方不接收此信息帧。

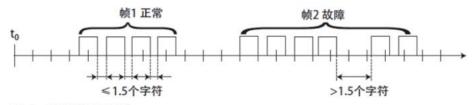


图 6: 帧的数据传输

MODBUS RTU CRC 校验

在 RTU 模式包含一个对全部报文内容执行的,基于循环冗余校验 (CRC) 算法的错误检测域[°] CRC 域检 查整个报文的内容,不管报文有无奇偶校验,均执行此校验。 CRC 域包含由两个 8 位字节组成的一个 16 位值。采用 CRC16 校验。低字节在前,高字节在后。

MODBUS RTU 仪器中的实施

根据官方 MODBUS 定义,由 3.5 个字符间隔触发命令开始,同样,命令结束也通过 3.5 个字符间隔表示。仪器地址和 MODBUS 功能代码有 8 位。数据字符串包含 nx8 位,数据字符串包含寄存器的起始地址和读/写寄存器的数量。CRC 校验为 16 位。

数值	开始	仪器地址	功能码	数据	总和校验		结束
	在 3.5 个字符 期间无信号	1-247	符合 MODBUS 规 范的功能码	符合 MODBUS 规范的数据	CRCL	CRCL	在3.5 个字符 期间无信号
字节	3.5		1	n	1	1	3.5

图 7:数据传输的 MODBUS 定义

仪器的 MODBUS RTU 功能码

仪器仅使用两个 MODBUS 功能码:

0x03: 读保持寄存器 0x10: 写多重寄存器

MODBUS 功能码 0x03: 读保持寄存器

此功能码用于读取远程仪器的保持寄存器的连续块内容。请求 PDU 指定开始寄存器地址和寄存器数量。从零开始寻址寄存器。因此,寻址寄存器 1-16 为0-15。响应信息中的寄存器数据按照每个寄存器两个 字节打包。对于每个寄存器,第一个字节包含高位比特,第二个字节包含低位比特。

请求

功能码	1 个字节	0x03
开始地址	2 个字节	0x00000xffffff
读取寄存器数量	2 个字节	1125

图 8: 读取保持寄存器请求帧

响应

功能码	1 byte	0x03	
字节数	1 byte	N×2	
寄存器值	N×2 byte		

N =寄存器数量

图 9: 读取保持寄存器响应帧

下面以读取保持寄存器 108-110 为例说明请求帧和响应帧。(寄存器 108 的内容只读,为两个字节数值 0X022B,寄存器 109-110 内容为 0X0000 和0X0064)

请求帧		响应帧	
数制	(十六进制)	数制	(十六进制)
功能码	0x03	功能码	0x03
开始地址(高字节)	0x00	字节数	0x06
开始地址(低字节)	Ox6B	寄存器值(高字节) (108)	0x02
读取寄存器数量(高字节)	0x00	寄存器值(低字节) (108)	Ox2B
读取寄存器数量(低字节)	0x03	寄存器值(高字节) (109)	0x00
		寄存器值(低字节) (109)	0x00
		寄存器值(高字节) (110)	0x00
		寄存器值(低字节) (110)	0x64

图 10: 读取保持寄存器请求帧和响应帧实例

MODBUS 功能码 0x10: 写多重寄存器

此功能码用于向远程仪器中写入连续寄存器(1, , , 123 个寄存器)块, 在请求数据帧中指定写入的寄存器 值。数据以每个寄存器两个字节打包。响应帧返回功能码, 开始地址和写入的寄存器的数量。

请求

功能码	1 个字节	0x10
开始地址	2 个字节	0x00000xffff
输入寄存器数量	2 个字节	0x00010x0078
字节数	1 个字节	N×2
寄存器值	N×2 个字节	值

N =寄存器数量

图 11:写多重寄存器请求帧

响应

功能码	1 个字节	0x10
开始地址	2 个字节	OxOOOOOxffff
寄存器数量	2 个字节	1123(0x7B)

N =寄存器数量

图 12: 写多重寄存器响应帧

下面以写入数值 0x000A 和 0x0102 至开始地址为 2 的两个寄存器中为例说明请求帧和响应帧。

请求帧	(十六进制)	响应帧	(十六进制)
数制	0x10	数制	0x10
功能码	0x00	功能码	0x00
开始地址(高字节)	0x01	开始地址(高字节)	0x01
开始地址(低字节)	0x00	开始地址(低字节)	0x00
输入寄存器数量(高字节)	0x02	输入寄存器数量(高字节)	0x02
输入寄存器数量(低字节)	0x04	输入寄存器数量(低字节)	
字节数	0x00	200	
寄存器值(高字节)	Ox0A		
寄存器值(低字节)	0x01		
寄存器值(高字节)	0x02		
寄存器值(低字节)			

图 13:写多重寄存器请求帧和响应帧实例

仪器中的数据格式

概述

浮点数

定义: 浮点数, 符合 IEEE 754 (单精度)

说明	符号	指数	尾数	尾数
位	31	3023	220	220
指数偏差	127			

浮点数单精度定义(4个字节,2个 MODBUS 寄存器)

实例:将十进制数 17.625 编译成二进制数

步骤 1: 将十进制形式表示的 17.625 转换成二进制形式的浮点数 先求整数部分的二进制表示

17 十进制= $16 + 1 = 1 \times 24 + 0 \times 23 + 0 \times 22 + 0 \times 21 + 1 \times 20$ 所以整数部分 17 的二进制表示为 10001B

再求小数部分的二进制表示

0.625 = 0.5 + 0.125 = 1x2-1 + 0x2-2 + 1x2-3

所以小数部分 0.625 的二进制表示为 0.101B

所以十进制形式表示的 17.625 的二进制形式的浮点数为 10001.101B

步骤 2:移位求指数。

将 10001. 101B 向左移, 直到小数点前只剩下一位, 得到 1. 0001101B, 而 10001. 101B = 1. 0001101 Bx 24。

所以指数部分为 4, 加上 127, 变为 131, 其二进制表示为 10000011B,

步骤 3: 计算尾数

去除 1.0001101B 的小数点前的 1 得到尾数为 0001101B (因为小数点前必定为 1, 所以 IEEE 规定只记录小数点后面的就可以), 针对 23 位尾数的重要说明:第一位(即隐藏位)不编译。隐藏位是分隔符左侧的位,此位通常被设置为 1 并抑制。

步骤 4: 符号位定义

正数的符号位为 0, 负数的符号位为 1, 所以 17. 625 的符号位为 0.

步骤 5: 转化为浮点数

1 位符号+ 8 位指数+ 23 位尾数

0 10000011 00011010000000000000000 (对应十六进制 表示为 0x418D0000)

参考代码:

如果用户使用的编译器有实现此功能的库函数则可以直接调用此库函数,例如使用的是 C语言,那么可以直接调用 C库函数 memcpy 获取一个浮点数在内存中存储格式的整数表示:

例如: float floatdata;//被转化的浮点数void* outdata:

```
memcpy (outdata, &floatdata, 4);
  假如 floatdata = 17.625
  若为小端存储模式则执行完上面的语句后则
  地址单元 outdata 存储的数据为 0x00
  地址单元(outdata + 1)存储的数据为 0x00
  地址单元(outdata+2)存储的数据为 0x8D
  地址单元(outdata+3)存储的数据为 0x41
  若为大端存储模式则执行完上面的语句后
  地址单元 outdata 存储的数据为 0x41
  地址单元(outdata + 1)存储的数据为 0x8D
  地址单元(outdata+2)存储的数据为 0x00
  地址单元(outdata+3)存储的数据为 0x00
  2、如果用户使用的编译器没有实现此功能的库函数则可以用如下的函数实
现此功能:
  void memcpy(void *dest, void *src, int n)
  char *pd = (char *) dest; char *ps = (char *) src;
  for (int i=0; i < n; i++) *pd + + = *ps++;
  }
  然后同上进行调用 memcpy (outdata, &floatdata, 4);
  为十进制数
  分为符号位、指数位和尾数位
  0 10000100 11110110110011001100110B
  1位符号+8位指数+23位尾数符号位S:0表示正数
  指数位 E: 10000100B =1 x27 + 0x26+0x25+0x24 + 0 x 23+1 x22 + 0x21+0x20
  = 128 + 0 + 0 + 0 + 0 + 4 + 0 + 0 = 132
  尾数位 M: 11110110110011001100110B =8087142
  步骤 2: 计算十进制数
  D = (-1) sx (1.0 + M/223) x2ET27
  =(-1) 0x (1.0 + 8087142/223) x2132-127
  =1x1.964062452316284x32
  = 62.85
  参考代码:
  float floatT0decimal(long int byte0, long int byte1, long int byte2,
long int byte3)
  {
  long int realbyte0, realbyte1, realbyte2, realbyte3; char S;
  long int E, M;
  float D; realbyte0 = byte3; realbyte1 = byte2; realbyte2 = byte1;
realbyte3 = byte0;
  if((realbyte0\&0x80) = =0)
```

```
{
    S = 0;//正数
}
    else
    {
    S = 1;//负数
}
    E = ((realbyte0<<1) | (realbyte1&0x80)>>7)-127;
    M = ((realbyte1&0x7f) << 16) | (realbyte2<< 8) | realbyte3; D = pow(-1, S)*(1.0 + M/pow(2, 23))* pow(2, E);
    return D;
}
    函数说明:参数    byte0、byte1、byte2、byte3 代表二进制浮点数的 4 个字节(
    返回值转换得到的十进制数
    例如用户向探头发送获取温度值和溶氧值命令,收到的应答帧中的代表温度值的 4 个字节为
```

0x00, 0x00, 0x8d, 0x41, 那么用户可以通过下面的调用语句得到对应的温度值的十进制数

即 temperature = 17.625。

float temperature = floatT0decimal(0x00, 0x00, 0x8d, 0x41);

读取指令模式

通讯协议采用 MODBUS (RTU) 协议,通讯内容及地址可依据客户需要更改。

默认配置为网络地址 1, 波特率 9600, 无校验, 一位停止位, 用户可以自行设置更改;

功能码 0x03:此项功能使主机能够获取从机的实时测量数值,该数值规定为单精度浮点型(即占据连续 2 个寄存器地址,接收顺序 abcd,解析顺序是 dcba),并以不同的寄存器地址标示相应的参数。

通讯寄存器地址如下:

0000-0001: 主测值

0002-0003: 温度值

0010: 报警状态 0: 低报 1: 高报 2: 正常

(2) 通讯举例:

功能码 03 指令举例:

通讯地址=1,温度值=25.0 主测值=2000.00,报警状态=2,

主机 16 进制发送: 01 03 00 00 00 0B XX XX

注释:【01】代表仪表通讯地址;

【03】代表功能码 03;

【16】代表有22个字节数据;

【00 00 44 FA】=2000.0; //主测值 解析顺序 44 FA 00 00

【00 00 41 C8】=25.0; //温度值 解析顺序 41 C8 00 00

【00 02】=2: //正常

【XX XX】代表 CRC16 校验码;

日常维护

仪器根据使用的要求,安装位置和工作情况比较复杂,为了使仪器正常工作, 维护人员需要对仪器进行定期维护,维护时请注意如下事项:

- 1、安装在室外请检查仪器安装箱体是否有漏水等现象;
- 2、检查仪器的工作环境,如果温度超出仪器的工作额定范围,请采取相应措施,否则仪器可能损坏或降低使用寿命;
- 3、清洁仪器的塑料外壳时,请使用软布和柔和的清洁剂清洁外壳,注意不要 让湿气进入仪器内部;
- 4、检查仪器显示数据是否正常:
- 5、检查仪器接线端子上的接线是否牢固,注意在拆卸接线盖前应先将交流电源断开。

常见问题

序	现象	可能存在原因	解决方法
1	1 LCD 显示不亮	仪器或液晶屏	检查电源线是否连接完好, 若仍然
'	LUD业小小允	幕供电故障	存在显示问题, 需返厂维修。
		电流模块故障	请检查电流输出接线是否正确。请
2	没有电流输出	· 电	参照说明书中接线端子图。若仍没
		以佞纹战悍	有电流输出, 需返厂维修。
	似 聖 松 山 山 法 ト 日 二	电流输出可能	请重新对 20mA 输出进行校准。具体
3	仪器输出电流与显示	没有进行正确	步骤可参考说明书第20页电流校
	电流不符合	的校准	准。
	业企公长社协放油 工	仪器上下限设	
4	数采仪或其他终端设	置以及电流输	请检查仪器内部或终端设备内部的
	备显示输出电流或数	出类型未设置	的上下限设置及电流输出类型。
	值与仪器显示不符	或设置有误	
	测旦日二从田山山於	传感器接线错	
5	测量显示结果波动较	误或显示速率	检查接线或适当增大显示速率。
	大	设置小	

成套性

名 称	数 量
1) 在线浊度仪 电子单元	1台
2) 仪器安装支架	1 套
3) 操作说明书	1 本
4) 合格证	1 份
5) 保修卡	1 份

注:使用前请检查购买仪器的成套性。

本公司其它系列仪器表请登录我公司网站查询。

质保

我司担保:本产品自购买之日起一年内无材料与工艺方面的显著偏差。

在质保期内,如果不是由于使用不当或误操作导致的必要维修,请支付运输费用将仪器送回,我们将免费维修。

我司的客户服务部门将确认产品问题是由产品自身偏差还是客户使用不当所造成的。

超过质保期的产品维修将在调换的基础上收取一定的费用。

以上保证是我司做出的唯一有效的保证,此保证取代其它所有明示或暗示的保证,包括为了达到特定目的任何暗示性、无限制性的适销性或适应性的保证。

对于任何由于买方或第三方因疏忽或其它行为引起的损失、赔偿、支出、损坏,我司概不负责。在任何情况下,不管是什么诉因,我司所承担的责任均不得超出索赔产品的成本,无论理由是基于合同、担保、赔款还是侵权(包括疏忽)。

任何理由的产品返修必须通过返修卡的形式递交申请(RIR)并经过我司客户服务部批准才可以返回。申请返修批准时,必须写明返修的品名、数量及理由,返修物品必须仔细的包装以免在运输途中损坏并且加保险。

我司不对任何因粗劣的包装而造成的损坏承担责任。

产品返修时,应使用仪器原来的包装,否则应该用气泡袋包裹再用瓦楞纸盒包装,最好再附上故障的简要的说明便于客户服务部检修该产品。

注意事项

尊敬的用户,请在使用仪器时,注意以下几个要点,以保证仪器的使用寿命和准确度。

- ★ 小心轻放, 避免在使用中碰撞, 掉落仪器。
- ★ 避免在使用中机身接触到水或其他液体。
- ★ 不要将仪器长时间放置在阳光下,使用过后应装好放在阴凉干燥通风的地方。
- ★ 长时间不使用仪器需将电源拔除, 以免发生意外。
- ★ 本仪器不适合使用于恶劣的环境下,高温低温或有强烈磁场干扰的地方都有 可能导致仪表损坏。
- ★ 仪器一旦出现问题,请与经销商或本公司联系,不要自行拆卸仪器,如有拆卸,本公司不再负责保修。

上海鼎桓流体控制有限公司

Tel:400-616-3501

Web:www.dinghuanliuti.com Add:上海市奉贤区展发路 55 号